Maîtrise de Mathématiques - ANALYSE FONCTIONNELLE U2 1 EXAMEN TERMINAL le lundi 28/01/2002, 14h-17h

- 1. Considérons les espaces $L^1([0,1])$ et $L^{\infty}([0,1])$ par rapport à la mesure de Lebsgue sur [0,1].
- (i) Expliquer comment $L^1([0,1])$ se plonge isométriquement dans $(L^{\infty}([0,1]))^*$ (ne pas justifier).
- (ii) Montrer que $L^1([0,1]) \neq (L^{\infty}([0,1]))^*$
- 2. Soit X un espace vectoriel normé et Y un sous-espace fermé de X de codimension 1, c'est à dire

$$X = Y \oplus \mathbb{C}z$$

pour un certain $z \notin Y$. Soit x^* une forme linéaire sur X définie par :

$$x^*(y+\lambda z)=\lambda, y\in Y, \lambda\in\mathbb{C}$$

Montrer que x^* est continue et déterminer $||x^*||$.

- **3.** Soit $a=(a_k)$ une suite numérique fixée. Montrer que si la série $\sum_{k=1}^{\infty} a_k x_k$ converge pour toute suite $(x_k) \in l^p$ alors $a \in l^p$ $(\frac{1}{p} + \frac{1}{q} = 1, p \in [0, \infty[$; si p=1 on pose $q=\infty)$.
- **4.** Soit \mathcal{H} un espace de Hilbert et $\{x_n\}$ une suite d'élément de \mathcal{H} .
- (i) Supposons que la suite x_n converge faiblement vers $x \in \mathcal{H}$ et que $\lim_n ||x_n|| = ||x||$, montrer que $x_n \to x$ en norme.
- (ii) Supposons que la suite x_n converge faiblement et que $\lim_n ||x_n||$ existe. Peut-en on déduire que la quite x_n converge en norme? Justifier la réponse.
- **5.** Soit \mathcal{H} un espace de Hilbert et $A \in \mathcal{L}(\mathcal{H})$ un opérateur hermitien.
- (i) Montrer que les valeurs propres de A sont réelles.
- (ii) Montrer que les sous-espaces propres de A sont 2 à 2 orthogonaux.
- (iii) Montrer que si \mathcal{H} est séparable alors l'ensemble $\sigma_p(A)$ des valeurs propres de A est au plus dénombrable.
- (iv) Que peut-on dire sur le cardinal de $\sigma_p(A)$ et de son adhérence $\overline{\sigma_p(A)}$ lorsque \mathcal{H} est séparable de dimension infinie et A est hermitien compact sans valeur propre 0? Justifier la réponse.
- **6.**Soit T l'opérateur défini par :

$$Tf(x) = \int_{[0,1]} min(x,y) f(y) dy$$

de $L^2([0,1])$ dans lui-même.

- (i) Montrer que T est compact et hermitien.
- (ii) Montrer que les valeurs propres de T différentes de 0 sont $\lambda_k=1/(\pi^2(k+\frac{1}{2})^2), k\in\mathbb{N}.$

(Indication. Remarquer qu'un vecteur propre f associé à une valeur propre non nulle λ est de classe \mathcal{C}^2 et est solution de l'équation $\lambda f'' = -f$ avec les conditions au bord f(0) = f'(1) = 0)

- (iii) Déterminer le spectre de T.
- (iv) Déterminer ||T||.

¹TELECHARGER SUR http://www.examens.fr.st